
AFRL-RV-PS- AFRL-RV-PS-
TR-2014-0035 TR-2014-0035

THE CHALLENGES OF SENSING AND REPAIRING
SOFTWARE DEFECTS IN AUTONOMOUS SYSTEMS

Stephanie Forrest and Westley Weimer

Regents of the University of New Mexico
MSC01 1247
1 University of New Mexico
Albuquerque, NM 87131-0001

9 May 2014

Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

AIR FORCE RESEARCH LABORATORY
Space Vehicles Directorate
3550 Aberdeen Ave SE
AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

DTIC COPY
NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs
security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09. This report is available to the general
public, including foreign nationals. Copies may be obtained from the Defense Technical
Information Center (DTIC) (http://www.dtic.mil).

AFRL-RV-PS-TR-2014-0035 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

//SIGNED// //SIGNED//
LESLIE VAUGHN PAUL D. LEVAN, Ph.D.
Program Manager Technical Advisor, Space Based Advanced Sensing

and Protection

//SIGNED//
BENJAMIN M. COOK, Lt Col, USAF
Deputy Chief, Spacecraft Technology Division
Space Vehicles Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY)
09-05-2014

2. REPORT TYPE
Final Report

3. DATES COVERED (From - To)
28 Nov 2012 – 24 Feb 2014

4. TITLE AND SUBTITLE
The Challenges of Sensing and Repairing Software Defects in Autonomous Systems

5a. CONTRACT NUMBER

FA9453-13-1-0235

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62601F

6. AUTHOR(S) 5d. PROJECT NUMBER
5018

Stephanie Forrest and Westley Weimer 5e. TASK NUMBER
PPM00019583
5f. WORK UNIT NUMBER
EF009906

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Regents of the University of New Mexico
MSC01 1247
1 University of New Mexico
Albuquerque, NM 87131-0001
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Research Laboratory AFRL/RVSS
Space Vehicles Directorate
3550 Aberdeen Ave., SE 11. SPONSOR/MONITOR’S REPORT

Kirtland AFB, NM 87117-5776 NUMBER(S)

AFRL-RV-PS-TR-2014-0035
12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A small study investigated the potential benefits and research challenges related to the software components of future space vehicle
designs. The study identified two potential research thrusts aimed at improving the resilience and reliability of software deployed on space
vehicles: (1) improving software resiliency through proactive diversity and (2) reducing costs and schedule overruns through automated
software repair. Both thrusts rely on recently developed technology known as GenProg. GenProg uses genetic programming (GP), an
iterated stochastic search technique, to search for program repairs. The search space of possible repairs is infinitely large, and GenProg
employs five strategies to render the search tractable: (1) coarse-grained, statement-level patches to reduce search space size; (2) fault
localization to focus edit locations; (3) existing code to provide the seed of new repairs; (4) fitness approximation to reduce required
test suite evaluations; and (5) parallelism to obtain results faster. The study focused on automated software transformations for repair and
resiliency, because there is extensive prior work on the related topics of anomaly detection, intrusion detection and fault isolation, which
could also be adapted to software in the space vehicles domain.

15. SUBJECT TERMS
Autonomous systems software repair, Fault tolerant software systems, Resilient Software systems, satellite software self-repair, self-
healing software systems, Sensing & repairing software defects in autonomous
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
Leslie Vaughn

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified Unlimited 24

19b. TELEPHONE NUMBER (include area
code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

(This page intentionally left blank)

Approved for public release; distribution is unlimited.

i
Approved for public release; distribution is unlimited.

Table of Contents
Section Page

1. Summary…………………………………………………………………………………...….1

2. Introduction…………………………………………………………………………..…….….1

3. Methods, Assumptions, and Procedures…………………………………………………...….1

4. Results and Discussion………………………………………………………………………..3

4.1 Technical Approach……………………………………………………………..……….5

4.2 Promising Future Research Directions……………………………………………...……5

4.2.1 Basic Research to Improve Resiliency…...………………………...…………5

4.2.2 Basic Research to Reduce costs and schedule overruns………...……………7

5. Automated Program Repair……………………………………...……………...…………….8

5.1 Genetic Programming……..…………………………...………………………….……..8

5.2 Patch Representation………………………………………………………..…………...9

5.3 Fitness Evauation………………...……………………………………...………….......10

5.4 Fault Localization……………...……………………………………………...………..10

5.5 Fix Localization……………...…………………………………………………...…….10

5.6 Mutation Operator……………………………………………………………...……….11

5.7 Crossover Operator………...……………………………………………...……………11

5.8 Binary and Assembly Repairs……………………….......………………..…………….11

6. Conclusion………………………………………………………………………...……….. 12

References……………………………………………………………………………………13

ii
Approved for public release; distribution is unlimited.

ACKNOWLEDGMENTS

This material is based on research sponsored by Air Force Research Laboratory under

agreement number FA9453-13-1-0235. The U.S. Government is authorized to reproduce and

distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.

DISCLAIMER

The views and conclusions contained herein are those of the authors and should not be

interpreted as necessarily representing the official policies or endorsements, either expressed or

implied, of Air Force Research Laboratory or the U.S. Government.

1

Approved for public release; distribution is unlimited.

1. Summary

A small study investigated the potential benefits and research challenges related to the software
components of future space vehicle designs. The study identified two potential research thrusts
aimed at improving the resilience and reliability of software deployed on space vehicles: (1)
Improving software resiliency through proactive diversity and (2) reducing costs and schedule
overruns through automated software repair. Both thrusts rely on recently developed technology
known as GenProg. GenProg uses genetic programming (GP), an iterated stochastic search
technique, to search for program repairs. The search space of possible repairs is infinitely large,
and GenProg employs five strategies to render the search tractable: (1) coarse-grained,
statement-level patches to reduce search space size; (2) fault localization to focus edit locations;
(3) existing code to provide the seed of new repairs; (4) fitness approximation to reduce required
test suite evaluations; and (5) parallelism to obtain results faster. The study focused on auto-
mated software transformations, for repair and resiliency, because there is extensive prior work
on the related topics of anomaly detection, intrusion detection and fault isolation, which could
also be adapted to software in the space vehicles domain.

2. Introduction

This document constitutes the final report of a one-year study to outline important software
challenges facing space vehicles, in particular, the challenges of detecting and repairing software
bugs on deployed vehicles.

Over the course of this grant we investigated ways that autonomous space vehicles and space
vehicle software could be designed to sense and respond to software problems. In addition to
scholarly activities such as publishing and presenting research results, the grant also facilitated
multiple face-to-face meetings with personnel from the Space Vehicles Directorate at Kirtland
Air Force Base.

3. Methods, Assumptions, and Procedures

Space vehicles and satellites are a critical component of our national and commercial
infrastructures, and their autonomous operation and physical separation present special
challenges for maintenance and reliability. Modern satellites are complex systems comprised of
hardware and software, including sensors, actuators, special-purpose operating systems,
programs and algorithms. These systems are managed using well-established techniques, such as
on-board sensing, strings of redundant components, and fail-over to “safe mode” for handling
certain classes of faults. Such techniques help mitigate physical faults caused by environmental
conditions, such as radiation, and are not directly applicable to software faults.

Beyond physical faults, software defects are becoming a significant concern for space vehicles.
For example, a recent billion-dollar deal from the United Arab Emirates to purchase two
intelligence satellites from France was harmed by the discovery of two “security compromising

2

Approved for public release; distribution is unlimited.

components” in purchased software that would provide a back door to the data transmitted to
the ground station [2, 27]. Software defects, whether malicious or unintentional, are likely to
become a serious problem in the future, as the complexity and functionality of deployed software
on space vehicles increases. Given the high cost of a typical Geosynchronous Earth Orbit (GEO)
satellite and launch vehicle, potential failures arising from software problems are worth
mitigating. Historical data from 1981–2001 suggest that 9% of satellites fail during their
operational lives and 4–5% of launch vehicles fail, totaling about one in seven satellites failing
prematurely [35]. Looking forward, software failures are likely to increase in prominence: A
June 28, 2012 report by the Department of Homeland Security noted that the number of
“incidents impacting organizations that own and operate control systems associated with critical
infrastructure” almost tripled from 2009 to 2010, and then increased by over a factor of four
between 2010 and 2011, the last year for which complete data are available [15].

Many popular security and software engineering solutions are targeted for desktop and server
environments, but modern space vehicles present a different challenge. For example, although
cloud-based storage and computing has become the norm in personal computing, “stand-alone”
deployment is typical for space vehicles, with a trusted base station that is not accessible through
public networks. As a second example, systems are created by trusted assembly methods out of
custom-made or off-the-shelf components in contrast with open-source or app-store models that
allow end users to easily combine software from different sources on a single system. Space
vehicles are designed to continue operating autonomously in the event that contact is lost with
the ground. This set of design constraints simplifies some problems (e.g., not being on an open
network reduces the threat of a remote hijacking attack), exacerbates others (expensive and
intermittent communication with the base station complicates the task of system upgrades or
emergency repairs), and leaves some problems unchanged (e.g., the threat of malicious “logic
time bombs” or inadvertent software bugs).

Unintended bugs affecting the deployed system can leave it unresponsive. Software failures in
specialized devices have both civilian and military implications, ranging from lawsuits [5] to
insurgents hacking United States Air Force USAF Predator unmanned aerial vehicle feeds [9].
Unintended defects are not only possible, but common: To take one popular example, the
Microsoft embedded Zune media player included a bug that turned devices into unresponsive
bricks [7] affecting millions of customers [6]. The bug was a relatively simple infinite loop in a
date calculation algorithm that failed to account for certain leap years. As a result, the devices
appeared fine during testing but failed after deployment on January 1, 2009.

Software defects similar to the Zune bug are ubiquitous. The number of outstanding software
defects typically exceeds the resources available to address them [3]. Mature software projects
are forced to ship with both known and unknown bugs [23] because they lack the development
resources to deal with every defect. For example, one Mozilla developer claimed that,
“everyday, almost 300 bugs appear far too much for only the Mozilla programmers to handle”
[4]. Once identified, bugs can be challenging to repair, leading to prolonged down time. On the
Mozilla project between 2002 and 2006, half of all fixed bugs took developers over 29 days

3

Approved for public release; distribution is unlimited.

each to fix [14]. This trend is particularly troubling in critical code—in 2006, it took 28 days
on average for operating system maintainers to develop fixes for security defects [36]. A
recent Cambridge University study [8] estimates that software bugs cost the global economy
$312 billion per year and that one-half of software development time is spent on debugging. As
the costs of faulty software have continued to rise, researchers have begun developing
automated methods for detecting and repairing software bugs. We believe that this work could
be adapted to the special software environment of space vehicles.

4. Results and Discussion

Over the course of this award, we investigated potential software threats to space vehicles and
identified future technologies to mitigate those threats. Although some satellite software modules
can be formally verified and assembled in a trustworthy way using off-the-shelf components, and
stand-alone deployments may have base stations that are inaccessible to public networks, there
remain several different ways that software can cause downtime or mission failure for space
vehicles. Further, this can even occur with the stringent security and deployment policies
already in place.

Security defenses adopted by other communities may not be present or used to their fullest
advantage in space vehicle systems. For example, digital signatures [30] can be used to verify
the provenance and untampered nature of code. Such signatures are common in analogous
embedded systems. For example, the Sony Playstation uses digital signatures to guard third-
party games run on its hardware [18]. A second example is “separation of concerns,” which
involves using modularity and encapsulation to limit the power of software modules and thus
limit the damage that can be done if that module fails. Such a separation has been identified as a
way to limit future attacks [29].

Although these techniques are potentially applicable, space vehicles has several special
properties that complicate their adoption, such as limited processor speed, reduced memory,
smaller storage, and power constraints. Our investigation suggested that three approaches, in
particular, merit further investigation.

Sensing at the Software Level. Anomaly/intrusion detection [16] involves using software-and
hardware-level metrics and sensors to establish a baseline associated with normal performance
and then note when the current operating profile deviates from that acceptable envelope [12].
Many space vehicles already include sensors for anomaly detection at the hardware level, and we
believe that such systems could be augmented to include sensing and monitoring software.
Tradeoffs exist between costs, such as operating system support requirements, and coverage,
such as the number of anomalies sensed and the number of false positives reported. We
hypothesize that existing expertise in sensing temperature, radiation, battery power and similar
metrics can be leveraged to help protect software.

4

Approved for public release; distribution is unlimited.

Autonomous Software Repair. Once a software bug has been detected, either through anomaly
detection or by manual reporting, it must be fixed. We hypothesize that existing approaches to
software repair [21, 40] can be leveraged to allow a group of heterogeneous space vehicles
and/or ground stations to attempt to fix a defect autonomously. We have evidence to suggest that
such an approach is feasible for commercial off the shelf (COTS) software [21] as well as
embedded systems [31, 33]. Candidate repairs produced by such techniques can be inspected by
ground station developers before being deployed. In addition, in critical situations, such as a fault
in the communication system software, an autonomously produced repair could serve as a last
line of defense to re-establish communication.

Proactive Software Diversity. Many space vehicles already include redundant system backups,
but a backup that uses exactly the same software will be vulnerable to exactly the same bugs [19,
25]. Our investigation suggests that diverse variants of critical software systems can be created
automatically that are functionally equivalent but feature different implementations (e.g.,
variable layouts, algorithmic changes, etc.). Such diverse variants present a shifting attack
surface to bugs or malware [10]. In addition, we have evidence that multiple diverse variants
created in advance can serve as a shield against unknown future bugs [34].

Illustrative Example. To see how these insights might play out and interact in this domain,
consider the following potential use case. Consider a deployed space vehicle with three strings of
redundant systems, each of which is slightly different as a result of proactive software diversity.
When a software bug or piece of malware attempts to influence the first string, that deviation
from the norm is likely to be sensed at the software level by anomaly/intrusion detection
techniques. Control can then be transferred to the second string of systems, which are not
vulnerable to the same bug because of their different attack surface. The second string and the
ground system can then work together to patch using autonomous software repair, and that fixed
replacement software can then be uploaded or deployed over the old first string software system.

Challenges Identified. We held several meetings between the investigators and the space
vehicles community, and we identified the following challenges for this domain.

1. Relatively low processing power on the space vehicle and high processing power on
ground. The processors that fly in space are many generations behind state-of-the-art
technology available in the consumer market. This is not surprising given the
extraordinary testing and hardening that must be performed on hardware before
deployment.

2. Separation between operating system and payload software. This provides a possible
opportunity to apply proactive diversity and automated repair methods to the operating
system without interfering with payloads, or vice-versa.

3. Fail-over redundancy structure is already commonly used. This is a stark contrast to
standard desktop computing.

4. Power consumption and heat dissipation matter. Recent results on post-compiler

5

Approved for public release; distribution is unlimited.

optimizations to reduce energy use of software [32] may be applicable to address this
challenge.

5. Users desire high reliability, but systems are often assembled near the deadline using off-
the-shelf-components. An ability to operate through errors using automatic software
repair methods would help address this challenge.

6. Users desire high uptime, and a “degraded mode” response to faults may be preferable to
a “fail-stop” response.

7. Computational resources for sandboxing and evaluating variants (i.e., candidate repairs)
are limited.

4.1 Technical Approach

Over the course of this grant and previous awards we have developed a technique for
automatically repairing software defects in off-the-shelf, legacy programs. We call this approach
GenProg, and it has scaled to repair defects in software totaling five million lines of code
guarded by ten thousand test cases [21, 22, 40]. The basic operation of GenProg on desktop
software is described in Section 4.5, which serves as essential background for understanding
changes that might be made to apply such a system to space vehicles.

Key capabilities that are relevant to the space vehicles domain are: (1) the ability to
automatically repair classes of software bugs that are not pre-specified; (2) the ability to
generate multiple semantically distinct program variants, each of which meets an existing
program specification (either formally defined or implicitly defined through test cases); and (3)
the ability to apply heuristic transformations to compiled code (at the assembly level or binary
level) to reduce energy consumption, or to improve other nonfunctional software properties.

4.2 Promising Future Research Directions

We identified two promising threads for future research: Improving resiliency through proactive
diversity, and reducing cost through automated repair.

4.2.1 Basic Research to Improve Resiliency

To improve the resiliency of software deployed on space vehicles, we propose developing
proactive software diversity methods that are practical for software systems facing the challenges
outlined above. We propose to first measure the mutational robustness of the relevant software
and then develop methods for automatically generating multiple semantically distinct software
versions. We envision that several of these diverse versions would be deployed on a single space
vehicle.

Our approach recognizes that only attackers (e.g., buffer overruns) and software bugs (e.g.,
infinite loops) depend on under-the-hood implementation behavior. For example, while buffer

6

Approved for public release; distribution is unlimited.

overruns depend strongly on the order in which the compiler lays out variables on the stack,
legitimate use cases do not, and thus a variant that re-orders the stack may defeat attackers
without reducing functionality.

Motivation: Satellite failure rates are too high. 9% of satellites fail during operational lives, and
4–5% of launch vehicles fail, for a total of about 1-in-7 that fail prematurely [35]. Fail-over
redundancy for software only protects against transient errors (e.g., radiation bit-flips), but not
against most program bugs or logic bombs [25]. For example, if third-party COTS software has a
bug and always fails after January 1, 2009 (as in the infamous Microsoft Zune player), failing
over to an identical copy results in a system that immediately encounters the same bug.

Proposed Research Activities:

1. Develop techniques to automatically generate diverse variants of payload (or control and
payload) software for space vehicles.

2. Develop algorithms to generate software variants that implement the same specification
but have multiple invisible implementation differences “under the hood” (e.g., scanning
left-to- right instead of right-to-left).

3. Construct a system in which multiple generated software variants present a shifting
defensive surface and are vulnerable to different failures. If even one is resilient, the
system can enter safe mode and contact the base station:

(a) For example, consider a situation in which a software defect akin to the “January
1, 2009” Zune bug causes the first-string space vehicle software to fail. If the
second-string software is not identical, but is instead a variant that uses different
implementation decisions, failing over to the second-string could resolve the issue
if the second-string software were immune to the bug (e.g., because it handled the
date calculation loop differently).

(b) In addition, such an approach would retain all expected resilience to transient
“bit-flip”- style errors.

Why Now, Why Here?
Space vehicles are an ideal setting to develop proactive diversity techniques, because it is well-
understood that investing in redundancy can avoid some failures, and this trade-off is accepted in
the community. By contrast, in standard software engineering, companies are rarely willing to
buy a second or third set of completely redundant hardware. Techniques for generating
semantically equivalent diverse variants have only recently become available [34].

7

Approved for public release; distribution is unlimited.

Basic Research Questions:

1. How can we automatically and efficiently generate a large number of diverse variants of
a software program? There are three distinct issues to be addressed: (1) Determining what
program representation is most appropriate (abstract syntax trees, assembly code, object
code); (2) determining which mutational operators should be used to generate the
diversity (delete, swap, replace, copy, etc.); and (3) determining how to evaluate if the
variations meet the desired specification (e.g., test cases, formal specifications, user
interaction, etc.).

2. How can we prove (or gain evidence) that these variants are not vulnerable to the same
faults (independent failure modes)? For example, we envision using fault injection
techniques, “time travel” studies of historical data, static analyses techniques, or
predictive fault models.

3. Given that we only have space to deploy k fail-over backups, how should the k variants
be chosen to maximize deployed diversity (i.e., maximize the chance that at least one will
defeat a new fault)? We propose using diversity distance metrics (including advanced
information flow techniques) or clustering algorithms.

4. A more ambitious research topic would investigate how to select variants for diversity
and to minimize power and/or memory use (software-only schemes can reduce software
power use 13–40% [38]).

4.2.2 Basic Research to Reduce Costs and Schedule Overruns

Software maintenance is an ongoing expense, which could be reduced if some maintenance tasks
were automated. We propose to focus on repairing bugs in software, first in the pre-deployment
phase, and as a long-term goal, to repair software that has already been deployed.

Motivation: Crafting and validating patches for software bugs can take ground teams weeks to
months for space vehicles, and the space vehicle payload may be disabled in safe mode while
awaiting the repair.

Proposed Research Activities:

1. Develop and refine techniques to automatically generate software patches using genetic
programming.

2. Design automated repair algorithms such that, by construction, synthesized patches
address the defect while retaining all tested functionality.

3. Generate a diverse set of candidate patches and present them to ground developers:
(a) Previous human studies have demonstrated that developers presented with

machine- generated patches take less time to address defects [39] and that such
patches can be as readable and maintainable as human-written patches [13].

(b) Multiple independent, differently shaped patches will help developers catch all

8

Approved for public release; distribution is unlimited.

corner cases (e.g., if one patch fixes the definition of foo and another fixes all uses
of foo, developers can adapt, merge or augment the suggestions).

(c) Patches can be constructed to minimize verification effort (e.g., favoring patches
that touch the fewest modules, have minimal change impact, etc.) or otherwise
integrate well with formal methods [28, 41, 42].

4. Develop techniques to use only some of the tests when “brainstorming” candidate patches
and use all of the tests only to verify those that make the final cut before showing them to
developers.

Why Now, Why Here?
Modern hardware (e.g., clusters, cloud computing) is such that computers can now generate and
evaluate patches faster than humans. Many reported software bugs for space vehicles (e.g.,
crashing, excessive memory usage, infinite loops) are amenable to preliminary single- patch
genetic programming techniques [22]. In a systematic study, our proposed GenProg approach
generated a single working patch for 50% of desktop software bugs for one-third the cost of
human developers [21].

Basic Research Questions:

1. How can we develop benchmark programs and bugs relevant to the space vehicles
community (i.e., where software is meaningfully different from previously studied web
browsers and databases) that will allow us to measure success?

2. How can we generate multiple informative, instructive patches to space vehicle software
defects?

3. How can we generate patches with reduced verification burdens?
4. Can we develop techniques to rapidly construct circumscribed repairs that isolate and

leave available some payload behavior or modules while walling off and shutting down
others? The goal is to develop an expanded safe mode in which some prescribed payload
functions remain usable while awaiting the final patch.

5 Automated Program Repair

We describe the basic operation of GenProg on desktop software, which serves as essential
background for understanding the research that would be required to apply such a system to
space vehicles.

5.1 Genetic Programming

GenProg uses genetic programming (GP) [20], an iterated stochastic search technique, to search
for program repairs. The search space of possible repairs is infinitely large, and GenProg
employs five strategies to render the search tractable: (1) coarse-grained, statement-level patches
to reduce search space size; (2) fault localization to focus edit locations; (3) existing code to

9

Approved for public release; distribution is unlimited.

provide the seed of new repairs; (4) fitness approximation to reduce required test suite
evaluations; and (5) parallelism to obtain results faster.

GenProg’s main algorithm takes the form of an iterative loop to construct and evaluate fit
patches. Fitness is measured by counting the number of test cases passed by a candidate repair.
The goal is to produce a candidate patch that causes the original program to pass all test cases,
including those that encode the defect. We represent each candidate patch [1] as a sequence of
abstract syntax tree (AST) edit operations parameterized by node numbers (e.g., Replace (81,
44)); see Section 5.2).

Given a program and a test suite, we localize the fault (Section 5.4) and compute context-
sensitive information to guide the search for repairs (Section 5.5) based on program structure and
test case coverage. We evaluate variant fitness (Section 5.3) by applying candidate patches to the
original program to produce a modified program that is evaluated on test cases. New candidate
patches are constructed from existing patches via mutation and crossover operators defined in
Section 5.6 and Section 5.7. Both generate new patches to be tested.

The search begins by constructing and evaluating a population of random patches. We initialize
a population by independently mutating copies of the empty patch. In each generation (iteration)
we employ tournament selection [26], which selects from the incoming population, with
replacement, high-fitness parent individuals. By analogy with genetic “crossover” events, parents
are taken pairwise at random to exchange pieces of their representation; two parents produce two
offspring (Section 5.7). Each parent and each offspring is mutated once (Section 5.6) and the
result forms the incoming population for the next iteration. The GP loop terminates if a variant
passes all test cases, or when resources are exhausted (i.e., too much time or too many
generations elapse). We refer to one execution of this algorithm as a trial. Multiple trials may be
run in parallel, each initialized with a distinct random seed.

The rest of this section describes additional algorithmic details, including: (1) a patch-based
representation, (2) large-scale use of a sampling fitness function at the individual variant level,
(3) fix localization to augment fault localization, (4) and novel mutation and crossover operators
to dovetail with the patch representation.

5.2 Patch Representation

An important GenProg enhancement involves the choice of representation. Each variant is a
patch, represented as sequence of edit operations (compare to [1]). It is possible to represent an
individual by its entire AST combined with a weighted execution path [40], but such an approach
does not scale to memory-constrained environments. For example, for one- third of defects we
have considered experimentally, a population of 40–80 ASTs did not fit in 1.7 GB of main
memory. However, half of all human-produced software patches are 25 lines or less [21]. Thus,
two unrelated variants might differ by only 2 × 25 lines, with all other AST nodes in common.

10

Approved for public release; distribution is unlimited.

Representing individuals as patches avoids storing redundant copies of untouched lines. This
formulation influences the mutation and crossover operators, discussed below.

5.3 Fitness Evaluation

To evaluate the fitness of a large space of candidate patches efficiently, we exploit the fact that
GP performs well with noisy fitness functions [11]. For intermediate calculation, we apply a
candidate patch to the original program and evaluate the result on a random sample of the tests,
choosing a different test suite sample each time. For efficiency, only variants that pass every test
in the sample are fully tested on the entire test suite. The final fitness of a variant is the sum of
the number of tests that are passed.

5.4 Fault Localization

GenProg focuses repair efforts on statements likely to be implicated in the defect. Such fault
localization approaches are well-established in software engineering [17]. For a given program,
defect, set of tests T, test evaluation function Pass: T → B, and set of statements visited when
evaluating a test Visited: T → P(Stmt), we define the fault localization function faultloc : Stmt
→ R to be:

 0 ∀t ∈ T. s /∈ Visited (t)
faultloc(s) = 1.0 ∀t ∈ T. s ∈ Visited (t) =⇒ ¬Pass(t)

0.1 otherwise

That is, a statement never visited by any test case has zero weight, a statement visited only on a
bug-inducing test case has high (1.0) weight, and statements covered by both bug-inducing and
normal tests have moderate (0.1) weights (this strategy follows previous work [40, Sec. 3.2]).
Other fault localization schemes could be employed directly by GenProg [24].

5.5 Fix Localization

We introduce the term fix localization (or fix space) to refer to the source of
insertion/replacement code, and explore ways to improve fix localization beyond blind random
choice. As a start, we restrict inserted code to that which includes variables that are in-scope
at the destination (so the result compiles) and that are visited by at least one test case (because
we hypothesize that certain common behavior may be correct). For a given program and defect
we define the function fixloc : Stmt → P(Stmt) as follows:

fixloc(d) = s ∃t ∈ T. s ∈ Visited (t) ∧
VarsUsed (s) ⊆ InScope(d)

The fix localization function just defined helps to ensure that candidate patches are well-formed:

11

Approved for public release; distribution is unlimited.

in our experiments, more than 90% of candidates compile correctly.

5.6 Mutation Operator

We consider three mutation operators: delete, insert and replace. In a single mutation, a
destination statement d is chosen from the fault localization space (randomly, by weight). With
equiprobability GenProg either deletes d (i.e., replaces it with the empty block), inserts another
source statement s before d (chosen randomly from fixloc(d)), or replaces d with another
statement s (chosen randomly from fixloc(d)). Inserted code is taken exclusively from elsewhere
in the same program. This decision reduces the search space size by leveraging the intuition that
programs contain the seeds of their own repairs.

5.7 Crossover Operator

The crossover operator combines partial solutions, helping the search avoid local optima. Our
new patch subset crossover operator is a variation of the well-known uniform crossover operator
[37] tailored for the program repair domain. It takes as input two parents, p and q, represented as
ordered lists of edits (Section 5.1). The first (resp. second) offspring is created by appending p to
q (resp. q to p) and then removing each element with independent probability of one-half. This
operator has the advantage of allowing parents that both include edits to similar ranges of the
program (e.g., parent p inserts B after A and parent q inserts C after A) to pass any of those edits
along to their offspring. Previous uses of a one-point crossover operator on the fault localization
space did not allow for such recombination (e.g., each offspring could only receive one edit to
statement A).

5.8 Binary and Assembly Repairs

The initial versions of GenProg focused on abstract syntax tree representations of C programs.
More recently, we have developed a prototype implementation for the Low Level Virtual
Machine (LLVM) compiler suite where the program is represented using LLVM’s
intermediate representation, and the operators are defined over the intermediate representation.

We have also developed technology for compiled (ARM and x86 assembly) and linked Execute
and Linkable Format (ELF) binary programs [33, 31]. The new representations allow repairs
when source code cannot be parsed into ASTs (e.g., due to unavailable source files, complex-
build procedures, or non-C source languages). They also reduce memory and disk requirements
sufficiently to enable repairs on resource constrained devices.

Relevant to the space vehicles domain, our techniques have been shown to reduce memory
requirements by up to 85%, disk space requirements by up to 95%, and repair generation time up
to 62%, which enables application to resource-constrained environments.

12

Approved for public release; distribution is unlimited.

These techniques constitute the first general automated method of program repair applicable to
binary executables and are an important first step towards on-board repair of software defects on
space vehicles where memory and computation resources are limited.

6 Conclusion
This report describes the work of a short preliminary study to explore the challenges of sensing
and repairing software defects in autonomous systems. We focused on the repair challenge
because there is extensive prior work on anomaly detection, intrusion detection, and fault
isolation which could be adapted to this domain.

We identified two promising areas for future research projects and outlined our thoughts about
how best to pursue them: (1) Improving software resiliency through proactive diversity and (2)
reducing costs and schedule overruns through automated software repair.

13

Approved for public release; distribution is unlimited.

References

[1] T. Ackling, B. Alexander, and I. Grunert. “Evolving patches for software repair.” Genetic
and Evolutionary Computation, pp. 1427–1434, 2011.
[2] I. Allen. “Discovery of spy parts leaves french-UAE satellite deal in doubt,” URL:
IntelNews at http:// intelnews. org/ 2014/ 01/ 07/ 01-1402/, Jan. 2014.
[3] J. Anvik, L. Hiew, and G. C. Murphy. “Coping with an open bug repository,” In OOPSLA
Workshop on Eclipse Technology eXchange, pp. 35–39, 2005.
[4] J. Anvik, L. Hiew, and G. C. Murphy. “Who should fix this bug?” International
Conference on Software Engineering, pp. 361–370, 2006.
[5] M. Barr. “Faulty code will lead to an era of firmware-related litigation,” In Electronic
Design, Jan. 2010.
[6] D. Bass. “Microsoft updates Zune devices, pledges to gain sales.” URL:
http://www.bloomberg.com/apps/news?pid=newsarchive&sid=aKNQROlvcaOM, Bloomberg,
Oct. 2007.
[7] BBC News. “Microsoft Zune affected by ‘bug’” URL: http: // news. bbc. co. uk/ 2/ hi/
technology/ 7806683. stm, Dec. 2008.
[8] G. Carver, L. Jeng, Paul, Cheak, T. Britton, and T. Katzenellenbogen. “Experts battle
£192bn loss to computer bugs.” URL: http://www.cambridge-
news.co.uk/Education/Universities/Experts-battle-192bn-loss-to-computer-bugs-18122012.htm,
2012.
[9] Mike Mount, Quijano Elaine. “Iraqi insurgents hacked Predator drone feeds, U.S. official
indicates” CNN.com, URL: http: // www. cnn. com/ 2009/ US/ 12/ 17/ drone. video. hacked/
index. html , Dec. 17, 2009.
[10] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight, A. Nguyen-
Tuong, and J. Hiser. “N-variant systems: a secretless framework for security through diversity.”
USENIX Security Symposium, Vancouver, B.C., Canada, 2006.
[11] E. Fast, C. Le Goues, S. Forrest, and W. Weimer. “Designing better fitness functions for
automated program repair.” Genetic and Evolutionary Computation Conference, Portland,
Oregon, pp. 965–972, 2010.
[12] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. “A sense of self for Unix
processes.” IEEE Symposium on Security and Privacy, Oakland, CA, pp. 120–128, 1996.
[13] Z. P. Fry, B. Landau, and W. Weimer.“A human study of patch maintainability.”
International Symposium on Software Testing and Analysis, Minneapolis, MN, pp. 177–187,
2012.
[14] P. Hooimeijer and W. Weimer. “Modeling bug report quality.” Automated Software
Engineering, pp. 34–43, 2007.
[15] ICS-CERT incident response summary report. “Industrial Control Systems Cyber
Emergency Response Team.” US Department of Homeland Security, 13-50012, URL:
http://www.uscg.mil/hq/cg5/cg544/docs/Year_in_Review_FY2012_Final.pdf , 2012.
[16] K. L. Ingham and A. Somayaji. “A methodology for designing accurate anomaly detection
systems.” IFIP/ACM Latin American Networking Conference, San Jose, Costa Rica, 2007.

14

Approved for public release; distribution is unlimited.

[17] J. A. Jones and M. J. Harrold. “Empirical evaluation of the Tarantula automatic fault-
localization technique.” In Automated Software Engineering, pp. 273–282, 2005.
[18] J. Kirk. “Sony asks for restraining order over PS3 hack.” URL:
http://www.computerworld.com/s/article/9204723/Sony_asks_for_restraining_order_over_PS3_
hack, Government IT, last modified Jan. 2011. Accessed March 31, 2014.
[19] J. C. Knight and P. Ammann. “Issues influencing the use of n-version programming.” IFIP
Congress, San Francisco, CA, 1989.
[20] J. R. Koza. “Genetic Programming: On the Programming of Computers by Means of
Natural Selection.” MIT Press, 1992.
[21] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. “A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each.” International Conference on
Software Engineering, Zürich, Switzerland, pp. 3–13, 2012.
[22] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg: A generic method for
automated software repair. Transactions on Software Engineering, 38(1):54–72, 2012.
[23] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. “Bug isolation via remote program
sampling.” Programming Language Design and Implementation, pp. 141–154, 2003.
[24] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical bug
isolation. Programming Language Design and Implementation, pp. 15–26, 2005.
[25] D. E. Lowell, S. Chandra, and P. M. Chen. “Exploring failure transparency and the limits of
generic recovery.” USENIX Symposium on Operating Systems Design and Implementation, San
Diego, CA, Oct. 2000.
[26] B. L. Miller and D. E. Goldberg. “Genetic algorithms, selection schemes, and the varying
effects of noise.” Evolutionary Computing, 4(2):113–131, 1996.
[27] A. Mustafa and P. Tran. “French-UAE intel satellite deal in doubt.” DefenseNews URL:
http: // www. defensenews. com/ article/ 20140105/ DEFREG04/ 301050006, Jan. 2014.
[28] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. “SemFix: Program repair via
semantic analysis.” International Conference on Sofware Engineering, pp. 772–781, 2013.
[29] J. Nielsen. “Building secura applications.” Technical report, Trapeze Group Europe A/S,
URL: http://www.broadband-testing.co.uk/download/TrapezeWLAN41v1.pdf , June 2006.
 [30] R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtaining digital signatures and
public-keycryptosystems.” Commun. ACM, 21(2): pp.120–126, Feb. 1978.
[31] E. Schulte, J. DiLorenzo, S. Forrest, and W. Weimer. “Automated repair of binary and
assembly programs for cooperating embedded devices.” Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Houston, TX, 2013.
[32] E. Schulte, J. Dorn, S. Harding, S. Forrest, and W. Weimer. “Post-compiler software
optimization for re- ducing energy.” Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Salt Lake City, UT, 2014.
[33] E. Schulte, S. Forrest, and W. Weimer. “Automatic program repair through the evolution of
assembly code.” Automated Software Engineering, pp. 33–36, 2010.
[34] E. Schulte, Z. P. Fry, E. Fast, W. Weimer, and S. Forrest. “Software mutational
robustness.” Genetic Programming and Evolvable Machines, pp. 1–32, 2013.

15

Approved for public release; distribution is unlimited.

[35] B. Sullivan and D. Akin. "A survey of serviceable spacecraft failuers." American Institute
of Aeronautics and Astronautics, 2001(4540):1–8, 2001.
[36] “Symantec Internet security threat report.” URL: http: // eval. symantec. com/ mktginfo/
enterprise/ white_ papers/ ent-whitepaper_ symantec_ internet_ security_ threat_ report_ x_ 09_
2006. en-us. pdf, Vol. X, Sept. 2006.
[37] G. Syswerda. “Uniform crossover in genetic algorithms.” J. D. Schaffer, editor,
International Conference on Genetic Algorithms, San Francisco, CA, pp. 2–9, 1989.
[38] V. Tiwari, S. Malik, and A. Wolfe. “Power analysis of embedded software: a first step
towards software power minimization.” IEEE Trans. VLSI Syst., 2(4):437–445, 1994.
[39] W. Weimer. “Patches as better bug reports.” Generative Programming and Component
Engineering, pp. 181–190, 2006.
[40] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. “Automatically finding patches using
genetic programming.” International Conference on Software Engineering, Vancover, B.C,
Canada, pp. 364–367, 2009.
[41] X. Yin, J. C. Knight, E. A. Nguyen, and W. Weimer. “Formal verification by reverse
synthesis.” Computer Safety, Reliability, and Security, pp. 305–319, 2008.
[42] X. Yin, J. C. Knight, and W. Weimer. “Exploiting refactoring in formal verification.”
International Conference on Dependable Systems and Networks, Estoril, Lisbon Protugal, pp.
53–62, 2009.

16

Approved for public release; distribution is unlimited.

LIST OF ACRONYMS

ARM
AST
COTS
ELF
GenProg/GP
GEO

LLVM
USAF
X86

Abstract Rewriting Machine (also a compiler infrastructure)
Abstract Syntax tree
Commercial of the Shelf
Executable and Linkable Format
Genetic Programming
Geosynchronous Earth Orbit
Low Level Virtual Machine (this is a compiler infrastructure)
United States Air Force
Family of backward compatible instruction set architectures based on the
Intel 8086(Intel Corp part number) central processing unit

17

Approved for public release; distribution is unlimited.

DISTRIBUTION LIST

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 1 cy

AFRL/RVIL
Kirtland AFB, NM 87117-5776 2 cys

Official Record Copy
AFRL/RVSS/Leslie Vaughn 1 cy

18

Approved for public release; distribution is unlimited.

(This page intentionally left blank)

